Skip to content

Get mean and standard deviations used to center/scale data from a prepped recipe.

Usage

get_recipe_params(recipe, param)

Arguments

recipe

Prepped recipe or rcp class object.

param

character(1). Possible values are center or scale.

Value

A named numeric vector with means (step = 'center') or standard deviations (step = scale'). Names correspond to recipe predictors.

Examples

test  <- simdata
feats <- wranglr:::get_analytes(test)
rec <-  recipes::recipe(~ ., data = dplyr::select(test, dplyr::all_of(feats))) |>
 recipes::step_log(recipes::all_predictors(), base = 10) |>
 recipes::step_center(recipes::all_predictors()) |>
 recipes::step_scale(recipes::all_predictors()) |>
 recipes::prep(training = test)
get_recipe_params(rec, "scale")
#> seq.2802.68 seq.9251.29 seq.1942.70 seq.5751.80 seq.9608.12 seq.3459.49 
#>  0.08495106  0.08735526  0.09188577  0.09188018  0.10634567  0.09348696 
#> seq.3865.56 seq.3363.21 seq.4487.88 seq.5994.84 seq.9011.72 seq.2902.23 
#>  0.09575663  0.09103747  0.09282479  0.09005451  0.08922376  0.10315964 
#> seq.2260.48 seq.4936.96 seq.2277.95 seq.2953.31 seq.3032.11  seq.4330.4 
#>  0.09214161  0.09374182  0.09969196  0.07875422  0.09379076  0.08887630 
#> seq.4914.10  seq.3896.5  seq.5002.7  seq.3476.4 seq.1130.49 seq.6356.60 
#>  0.09248241  0.08995053  0.08732796  0.09252996  0.08751564  0.09146692 
#> seq.4579.40 seq.8344.24 seq.8441.53 seq.9360.55  seq.7841.8 seq.8142.63 
#>  0.09139596  0.09874588  0.09255668  0.09234006  0.08733651  0.09262342 
#> seq.4461.56 seq.9297.97 seq.9396.38 seq.3300.26 seq.2772.14 seq.6615.18 
#>  0.08873767  0.08925680  0.08993740  0.09374001  0.08576509  0.08677730 
#> seq.8797.98 seq.9879.88 seq.8993.16 seq.9373.82 
#>  0.10461108  0.08302976  0.09531872  0.08283751 
get_recipe_params(rec, "center")
#> seq.2802.68 seq.9251.29 seq.1942.70 seq.5751.80 seq.9608.12 seq.3459.49 
#>    3.438979    3.439728    3.423638    3.428196    3.427512    3.388480 
#> seq.3865.56 seq.3363.21 seq.4487.88 seq.5994.84 seq.9011.72 seq.2902.23 
#>    3.388280    3.388948    3.388497    3.388886    3.388982    3.387285 
#> seq.2260.48 seq.4936.96 seq.2277.95 seq.2953.31 seq.3032.11  seq.4330.4 
#>    3.388674    3.388382    3.387792    3.399252    3.381620    3.385452 
#> seq.4914.10  seq.3896.5  seq.5002.7  seq.3476.4 seq.1130.49 seq.6356.60 
#>    3.382065    3.385052    3.388270    3.384922    3.388647    3.382381 
#> seq.4579.40 seq.8344.24 seq.8441.53 seq.9360.55  seq.7841.8 seq.8142.63 
#>    3.383859    3.395858    3.381571    3.381561    3.394183    3.384688 
#> seq.4461.56 seq.9297.97 seq.9396.38 seq.3300.26 seq.2772.14 seq.6615.18 
#>    3.387160    3.410809    3.388310    3.387717    3.397427    3.380865 
#> seq.8797.98 seq.9879.88 seq.8993.16 seq.9373.82 
#>    3.390829    3.394751    3.392975    3.394166 

rcp <- create_recipe(test)
#> Warning: NaNs produced
get_recipe_params(rec, "center")
#> seq.2802.68 seq.9251.29 seq.1942.70 seq.5751.80 seq.9608.12 seq.3459.49 
#>    3.438979    3.439728    3.423638    3.428196    3.427512    3.388480 
#> seq.3865.56 seq.3363.21 seq.4487.88 seq.5994.84 seq.9011.72 seq.2902.23 
#>    3.388280    3.388948    3.388497    3.388886    3.388982    3.387285 
#> seq.2260.48 seq.4936.96 seq.2277.95 seq.2953.31 seq.3032.11  seq.4330.4 
#>    3.388674    3.388382    3.387792    3.399252    3.381620    3.385452 
#> seq.4914.10  seq.3896.5  seq.5002.7  seq.3476.4 seq.1130.49 seq.6356.60 
#>    3.382065    3.385052    3.388270    3.384922    3.388647    3.382381 
#> seq.4579.40 seq.8344.24 seq.8441.53 seq.9360.55  seq.7841.8 seq.8142.63 
#>    3.383859    3.395858    3.381571    3.381561    3.394183    3.384688 
#> seq.4461.56 seq.9297.97 seq.9396.38 seq.3300.26 seq.2772.14 seq.6615.18 
#>    3.387160    3.410809    3.388310    3.387717    3.397427    3.380865 
#> seq.8797.98 seq.9879.88 seq.8993.16 seq.9373.82 
#>    3.390829    3.394751    3.392975    3.394166 

get_recipe_params(rcp, "scale")
#> seq.2802.68 seq.9251.29 seq.1942.70 seq.5751.80 seq.9608.12 seq.3459.49 
#>  0.08495106  0.08735526  0.09188577  0.09188018  0.10634567  0.09348696 
#> seq.3865.56 seq.3363.21 seq.4487.88 seq.5994.84 seq.9011.72 seq.2902.23 
#>  0.09575663  0.09103747  0.09282479  0.09005451  0.08922376  0.10315964 
#> seq.2260.48 seq.4936.96 seq.2277.95 seq.2953.31 seq.3032.11  seq.4330.4 
#>  0.09214161  0.09374182  0.09969196  0.07875422  0.09379076  0.08887630 
#> seq.4914.10  seq.3896.5  seq.5002.7  seq.3476.4 seq.1130.49 seq.6356.60 
#>  0.09248241  0.08995053  0.08732796  0.09252996  0.08751564  0.09146692 
#> seq.4579.40 seq.8344.24 seq.8441.53 seq.9360.55  seq.7841.8 seq.8142.63 
#>  0.09139596  0.09874588  0.09255668  0.09234006  0.08733651  0.09262342 
#> seq.4461.56 seq.9297.97 seq.9396.38 seq.3300.26 seq.2772.14 seq.6615.18 
#>  0.08873767  0.08925680  0.08993740  0.09374001  0.08576509  0.08677730 
#> seq.8797.98 seq.9879.88 seq.8993.16 seq.9373.82 
#>  0.10461108  0.08302976  0.09531872  0.08283751