Create A Summary Table
create_summ_tbl.Rd
Create a summary table of all the feature data based on a grouping variable of meta data. Defaults summary statistics include:
min
median
mean
sd
(standard deviation)mad
(median absolute deviation)max
Usage
create_summ_tbl(
data,
group_var,
.funs = c("min", "median", "mean", "sd", "mad", "max")
)
Arguments
- data
A
data.frame
ortibble
object containing data for summary.- group_var
character(1)
. An unquoted (or quoted) string containing the indices to group the statistics, e.g.Group
. If missing, ungrouped statistics are returned.- .funs
character(n)
. String(s) of the functions used to summarize the data. Each function must take a vector of data as input and return a summary scalar, e.g.mean()
.
Examples
create_summ_tbl(simdata)
#> # A tibble: 40 × 7
#> Feature min median mean sd mad max
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 seq.2802.68 1393. 2805. 2798. 515. 495. 4325.
#> 2 seq.9251.29 1598. 2801. 2807. 546. 624. 3986.
#> 3 seq.1942.70 1543. 2668. 2710. 556. 603. 3882.
#> 4 seq.5751.80 1496 2727. 2739. 561. 576. 3948.
#> 5 seq.9608.12 1056. 2708. 2753. 642. 553. 4905.
#> 6 seq.3459.49 1232. 2496. 2500. 504. 528. 3800.
#> 7 seq.3865.56 865. 2487. 2500 501. 526. 3631.
#> 8 seq.3363.21 1179. 2489. 2500. 493. 477. 3999.
#> 9 seq.4487.88 1304. 2501. 2500 509. 465. 3752.
#> 10 seq.5994.84 1297 2508. 2500. 509. 498. 4231.
#> # ℹ 30 more rows
create_summ_tbl(simdata, gender)
#> # A tibble: 40 × 13
#> Feature min_F min_M median_F median_M mean_F mean_M sd_F sd_M mad_F
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 seq.2802… 1393. 1765. 2710. 2891. 2730. 2869. 568. 449. 433.
#> 2 seq.9251… 1738. 1598. 2758 2824. 2736. 2881. 535. 553. 598.
#> 3 seq.1942… 1543. 1668. 2594. 2714. 2658. 2765. 580. 529. 576.
#> 4 seq.5751… 1766. 1496 2651. 2783. 2697. 2782. 546. 580. 618.
#> 5 seq.9608… 1056. 1357. 2854. 2501. 2914. 2585. 671. 571. 598.
#> 6 seq.3459… 1461. 1232. 2434. 2610 2446. 2556. 529. 475. 486.
#> 7 seq.3865… 1607. 865. 2497. 2486 2545. 2453. 506. 498. 486.
#> 8 seq.3363… 1179. 1536. 2493. 2484. 2511. 2489. 543. 441. 490.
#> 9 seq.4487… 1304. 1455. 2514. 2487. 2501. 2499. 549. 469. 479.
#> 10 seq.5994… 1527. 1297 2524. 2468. 2509. 2490. 549. 470. 514.
#> # ℹ 30 more rows
#> # ℹ 3 more variables: mad_M <dbl>, max_F <dbl>, max_M <dbl>
# Arbitrary 3 groupings
simdata$group <- sample(1:3, nrow(simdata), replace = TRUE)
create_summ_tbl(simdata, "group")
#> # A tibble: 40 × 19
#> Feature min_1 min_2 min_3 median_1 median_2 median_3 mean_1 mean_2
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 seq.2802.68 1393. 1798. 1505. 2665. 2941. 2805. 2680. 2952.
#> 2 seq.9251.29 1738. 1598. 1862. 2828. 2758 2805. 2833. 2824.
#> 3 seq.1942.70 1543. 1680. 1668. 2715. 2594. 2785 2716. 2682.
#> 4 seq.5751.80 1756. 1788. 1496 2908. 2698. 2645. 2836. 2656.
#> 5 seq.9608.12 1056. 1633. 1500. 2802. 2741. 2451. 2816. 2773.
#> 6 seq.3459.49 1232. 1533. 1325. 2461. 2592. 2513. 2451. 2529.
#> 7 seq.3865.56 1344. 865. 2081. 2513. 2419. 2774. 2509. 2386.
#> 8 seq.3363.21 1179. 1627. 1370. 2458. 2574. 2628. 2486. 2545.
#> 9 seq.4487.88 1304. 1448 1702. 2459. 2487. 2572. 2449. 2490.
#> 10 seq.5994.84 1297 1566. 1843. 2442. 2545. 2555. 2420. 2561.
#> # ℹ 30 more rows
#> # ℹ 10 more variables: mean_3 <dbl>, sd_1 <dbl>, sd_2 <dbl>, sd_3 <dbl>,
#> # mad_1 <dbl>, mad_2 <dbl>, mad_3 <dbl>, max_1 <dbl>, max_2 <dbl>,
#> # max_3 <dbl>