Get Feature Selection Markers
get_fs_features.RdReturns the maximum, se1, and se2 features from
a completed feature_select object.
Arguments
- x
A
feature_selectclass object from a call call tofeature_selection().
Value
A list containing:
- features_max
Combination of features that gives maximum/minimum mean cost function.
- features_1se
Combination of features that has a mean cost function that is one standard error (SE) from the maximum/minimum mean cost function.
- features_2se
Combination of features that has a mean cost function that is
1.96*SEfrom the maximum/minimum mean cost function.
Examples
data <- wranglr::simdata
feats <- attr(data, "sig_feats")$class
fs <- feature_selection(data, candidate_features = feats,
search_type = search_type_forward_model(),
model_type = model_type_lr("class_response"),
runs = 2L, folds = 2L)
fs_obj <- Search(fs)
#> ℹ Starting the Feature Selection algorithm ...
#> ── Using `Forward-Stepwise` model search ──────────────────────────────
#> ℹ Step 1 of 5
#> ℹ Step 2 of 5
#> ℹ Step 3 of 5
#> ℹ Step 4 of 5
#> ℹ Step 5 of 5
get_fs_features(fs_obj)
#> ══ Features ═══════════════════════════════════════════════════════════
#> • features_max 5
#> • features_1se 3
#> • features_2se 2
#>
#> ── features_max ───────────────────────────────────────────────────────
#> 'seq.2802.68', 'seq.9251.29', 'seq.1942.70', 'seq.5751.80', 'seq.9608.12'
#> ── features_1se ───────────────────────────────────────────────────────
#> 'seq.2802.68', 'seq.9251.29', 'seq.1942.70'
#> ── features_2se ───────────────────────────────────────────────────────
#> 'seq.9251.29', 'seq.1942.70'